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1. Introduction

In Chapter 9 of [1], Lindscy and Simeon develep several
interesting Jdigital phase locked loops (DPLL) for the purpose of
svmbo] syvnchronization. In thejreifort to estimate the variances
of the epoch estimation errors, it was assumed that the LPLL
adiustment rate 1s slow and the cerrors small. lhen an “cuuivalent'
phase locked loop (PLL) was found, with an “cquivalent’™ white
noise input.  The error variance of a linearized form of this 1L
was then used as an approximation to the c¢rror variance of the DPLY
In the development of such 4 continuous time purameter approximatio:
there are (or must be) cither implicit or explicit amplitude
scalings of the signal and noise and of the svstem gains. By
speaking of an "equivalent PLL", and using it to estimate the errer
variances, there is at least the tacit recognition that “or sarce

suitable amplitude scaling of the error scquence, there is a con-

tinuous parameter interpolation of the error scquence which ix

" .

close in some statistical sense to the output of the "equivalent

PLL. But the exuact sense in which the PLL ix "cyuivalent' or ¢lo-c

is not clear, owing to the informalitv of the development and the -

of a spectral analysis technique which {ivxed the state vaviable,

and does not allow it to varv naturaliy., The general idea is useful,

however, since owing to "central limit theorem” Jlike effects, tae
complicated detailed structure of the DPIL would be rerlaced by

a PLL with a white noise input, which is casicr to analvze. When
speaking of closeness of a DPLL and a PLL, we mieht mean that if
the DPLL were parametrized (by, sav, the svmbel ‘nteral T or by

a system gain), then as the paramcter converyca to (say) zero, the




output of the DPLL converged in a suitable sense to the output
of the PLL. Here, a systematic and rigorous way of doing this i=s
developed. The technique has wide applicability. The specific
end results are of the same type as obtained in (1], except that
owing to the 'weak convergence' nature of the approximation, much
information on the DPLL beyond the error variances can he
(approximately) obtained from the limit process.

Recently a very useful technique {2] has been developed for
getting precise (in a sense to be described below) diffusion limits

of a sequence of suitably scaled (and suitably interpolated into =

continuous parameter processes) stochastic difference cquations. GHe-e

these methods are applied to the synchronization problem, and the
correct approximating diffusion is obtaincd in a mathematically
rigorous way. The limit could conceivably be interpreted as the
output process of a particular PLL whose input noise is white
Gaussian.+ But the important thing is that it is not necessary to
make ad-hoc assumptions in the development. ‘ihe method can be
used to handle a wide variety of structurally similar problems

in a systematic way. For specificity, we treat the scheme of
Figure 9.34 of [1] under the noise assumptions there. Sce igure !
for the system. The same general scheme has been applied to other
problems in [3]: namely, to get diffusion approximations to the
"state' processes of a learning automata for adaptive telephone
routing and an adaptive quantizer. The diffusion approximations
are much easier to study than the original processes. Reclated
"continuous time'" methods have been applied in [4] ‘o several

"continuous time' problems.

+ . . . . - . - .
We do not emphasize this because the limit equation is quite
simple-and an interpretation is not helpful.
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The specific problem, scaling and interpolation will be
developed in Section 2. The development is for the simple case |
connected with ([1}, Figure 9.33). [Ixtensions to more general

noise, intersymbol interference and clock drift are discussed in

i
t
(
1

Section 5. As will be clear, the technique gives more information
than simply an approximation to the error variance. In Section 3,
the general background theorem is given, together with some
definitions from the theory of weak convergence of a sequence of
stochastic processes. In Section 4, the theorems of Section 3 arc
applied to the problem of Section 2, and the main limit thecrem

obtained.
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2. The DPLL; formulation, scaling and interpolation j
]

e}

The circuit is given in Tigure 1, and Figurce I gives the
timing sequences. In this section and in Section 4, the signal

sequence {sn} is a sequence of independent random variables,

1 : . .
= > ) = = I i S = ~ } - i
where Sh tAO and I{sn \0} 5 and s (t) input signa i

Sy in the interval [nT+6O, nT+T+60), wherc 60 is the unknown

epoch which is to be estimated. Since only the estimation crrors

are important, with no loss oi generality we set éO = 0. The

input noise nT(t) is white Gaussian, and its' power will be

given below. Let WT(t) = f;nT(S)ds = Wicner process with vartarce
c%t. We subscript nT(-) and WT(‘) by T for reasons to be
discussed below (2.3). More general signal and noise models will
be discussed in Section 5. Let Qn denote the nth estimate of

& c ~ X = P _ T o= ~ .‘.
0 and set n (e, 60)/1 Ln/]

The algorithm. Using the two parameters, Aﬂ_),kn, define

en(-,-1 (see Figure 1) by

1

; - A - T S { T
(z.1) enuo1tn) [sp(Tra-ag ) Speq872)

+

WT( (n+]+A+}\n)'f) - WT((m‘A”‘n-l)TH

. Isn(A-An_I)T + sn+1(1-A+kn)T

+

WT((n*‘Z'A*‘Xn)T) - WT((n+1_A+\n~l)T) | .

Throughout, it is assumed (as in {1}) that A < 1/4. Witk

use of a general finite memory linear filter, {@n}. '\nl, is

defined by




i

n+1 n 0

(2.2) K
Yoy

n+l n T . &

where Y > 0. The technique for (2.2) is very similar to that

for (2.3). The limits all have the form (4.1) and differ onlv in

the power of the input noise and in 9 being replaced by TS AL '
1
We will work with (2.3) for simplicity, where gn(m."1 = C“(f. BV :
i
(2.3) P =2+ Le (a XY = vy g (A ).
) n+l n T n* 'n-1"n n m* n-1° n

In any particular application, where T 1is fixed a-priori,
0% is determined from the problem data. But, consider a sequence
of systems of the form (2.3), the sequence being parametrized by

~

T~ 0. Assume, for purposes of this argument, that Cn = 0, and

T
that <« T + f nT(s)ds =Yy is used to estimate 5o via a likelihood

0 0
ratio. Thus, if Yo > 0, then Sq = AO > 0 1is chosen. Note ‘
. \ S
P{choosing sp = Ag 7 0} s T "Agt s J AUTdN(O,l),
= 1
oT/T ﬂ
where N(0,1) 1is the standard normal distribution. Thus, a natural

. . . 2 2 .
parametrization is o = © T for some constant ¢. Note that the

{noise power in a bandwidth of order 1/T)/signal power)is

constant, under the above scaling.
As v =~ 0, the continuocus parameter inter~~'ation (interpolation
interval Y) of Jkn} converpes to the solution of an ordinary

differential equation

l-Q'-LL.“‘ }




(\
which will not yield the detailed path information which is
desired. A further normalization i1s required for this. Tt 1s
convenient to write g (A ,% ) in the form
n* n-1’n
= A - S A S :
gn (oo ty) = i (08 S M LS
+ w(n41+;+kn) - k(n+A+Kn_])§ i
- luﬂ-&n_l)sn + (1»$+An)ﬁn+] WL“*Q’ﬂ'-nﬁ oWt SR ;
|
}
where w(-) 1s a Wiener process with variance STt .
Next, define Ug = \n//7 and define the process UY(-) by 4
u'(t) - U; on cach interval [ny,nv+Y). With narameter ' k
) ‘-" 1 \ A T3 TA ,)\' = 31 ,\.\" : ¢ 1 N 4
replacing -1 ne define g(A,A") }gn( ), and define t
oY, . — ‘ , . }
N (A Ay 2 o¢ X A - A / . Rt C W o the
a1 M gn( n-1° n) 2 ( n—l’\n) We can now writ 1€ i
normalized and centered iteration as !
l
> Y ooy o+ y(sn ) RN S S Lo
(2.4) Upa Us Y(g('n-l’\n)//ﬂ' T
!
:‘
Define the derivative %X E(\,&){\zo z -V, It can be shown that 3
¥ > 0. For the analysis, it is convenient to expand (2.4) as
\ Y Y ro:
. = ~ t + 7 e /\\ .\
(2.5) Un+1 Un Y Un Yoot VY n( n-1 n)’
2 2 Y oY
a AT+ A T 'y and O(x)/ix! i
where Vo re O(] n‘ | n—l! l(n Ul and 00/ Ixg s
bounded.
.
The 1limit theorem of Section 4 implies that 'V (- ) converges

in distribution to a particular Gauss-Markov ditivsion U(-) as v + .

*We can define wit) = wT(fT)/T.




""'.---.-.-..-...-...--’!-...-..-..-..-..--l.!!!!""'"‘!!!lll!E!E&:

This limit would be the output of the "equivalent" PLL, and onlv
makes sense as a ''near equivalence” if Y is small. In the cited
section of [1], it is alsc supposed that the crror estimates
change slowly (small v} and, in fact, that the kn are "constapt"
over a '"'long period" of time. The latter extraneous assumption

is not needed here.

Properties of {A } are obtained from 1} = Jyou! ' '
} or, equivalentlyv, {from (ny = t)
I
f N s \ ~ ,w.\\
{2.0) vi o U(t) \{1‘/Y! ~ vy U(nl TJ

\1though the result does not depend on it, 1+ would normaliv Jepend
on T, and the limit results suggest the appropriate form of tio

dependence. Since we arc concerned with the behavior of f‘”?

over real time intervals f{n: nT < t}, by (2.6) we should have

Yy -0 as T >0. If Y/T~>0 as T > 0, then (2.6) implies that

the syvstem output becomes {Un]. constant on anv finite time

interval as T ~ 0. Let nT = t, If ¥/T >« as T » «  then

C1t/T

!
/YY - U(nT-Y/T) -~ U(®) (U(*) has the limit distributior, ?
as t » o of U(t)). In particular, let vy = ¢T , « < 1. Then H
the smaller is «, the larger are the errvors. The best and most
natural form in Y = ¢cT. Then the change of Xn per sample is
proportional to the symbol interval width. The initial error Ly f

must be O0(YY), for otherwise the system (2.3) will not be able

to improve the €stimate for small Y. 1




Via the method of the next sccetieon, 1t car he shown *°

vp torms in (2,50 contribute nothing to the Jim:

of simplicity, we drop them now. Thus, hencetorth we worh with

the partially Tincarized form




5. Mathematical Background

3a. Remarks on weak convergence theory. The theory of weak cor-

vergence of a reauence of probability measures 1s o rowerful tan!
which has found applications in many arecas of applied rrebpabhilite
Al

NP

7 Fond F'al. Onlv a few comments will be made here.

ps [N

full treatment, see {101, Let DO, ] denote the srace
valued functions which are right continuous and have letf:s e
limits. The piecewise constant process U (- can be treated

as an abstract random variable with values in DIt e, and "o o inces

a probability measure P} on it, factually an the zete nt 070
defined by a c¢ortain topology, called the Skorokbod topolny

this nced not concern us here}. The sequence ﬂP3(~}‘ HESEE I ISR
be tight if for each ¢ > 0, there Is a compact set L. € o .o

Y . . .
such that P{U (-) € ké} ~ 1 - & for cach ¢&. The scuuence

i

{U'(-); converges weakly to a process U(-) if Uf-) has pathe

in Df0,») and induces a mecasurc P on it, ai.! i{ for ecvery

bounded and continuous recal valued {unction +i(-) on DU ,>),

LOELvdP (v) s [ F(V)dP(v)  as oy o 0. If (U (-Yy  is tight, then
)

each subsequence contains a further subsequence which converges f
weakly to some process with paths in D{0,»). In Secticn 4, 1t wit’ !
be shown that for our problem all limits are actually the same Caus - i
Markov process. The 1imit will give us the desired information shoeut
the errors and dynamics of fU;? for small . Weak convergence - i
a substantial generalization of convergence in Jdistributinn.

Theorem 1 below gives criteria for tightness and wea eavergence to a




specific limit which are readily verifiable for our problem div. -
in terms of the problem data. Despite the abstract Tramework, !
techniques are rcadily usable on problems such as the one o Sco
and extensions, and the method of proof of lTheorem 2 itilustruve  *h.
relatively straic¢htforward way in which the abstvact Theorem o onn

often he applicd.

3b. Remarks on the limit theovem. Let RB(.3 dencte o =tandavrs:
Wiener nrocess (covariance t) and x{:) the solution to tho ol

stochastic differential equation

,-
(7]
p—id

—

dx = k(x,t)dt + v{x,t)dB,

where we suppose that k(-, ) and v(-,-) are continuous and tha*

(3.1) has a unique solution (in thc sense o! distributionsi. Let R

PN

denote the set {;;, i <n, U, 7 <mn}, and ie* Eé denote the

conditional expectation given R;. Define the c¢onditional Taverage

.. ~ [ 5
difference" operator A’ by A'iin,y o= Lléiinw*yl = fluyyi/y, wheve
f{-Y 1is a function which is constant on the iatervals  ny,ny+~y o and

Yy

which depends on at most Rﬁ at time ny. The cperator N defined by
o
{3.2) A {x,t) = k{yx,t) - ¢

is the differential generator of the nrocess (3.1). It

(3.3) AYEUY (ny),ny) - (A+3/36)FCY . ny) + 0




as Y » 0 for a suitably large class of functions {, then, un. o
some subsidiary conditions one could conclude that 1 (-) + Wt

weaklv., Untortunately, (5.3: is hard to cet an!l dnon not Lole in
our cvase. Kurtz [7] showed that if {53,353 heids wie tho

H Ty L} \ T : - M
f is "perturbed" to some f which s close te  {, then odes

snome subsidiary conditions the processes will Converce we

This roint of view wa-s developed and simpliticd in =i, 0 oA
we use the form Jdeveloped in 12!, which is the » <0 conven. ot 1

rurposes of this paper.

For purely technical reavons in the preot 10 dx oroves o
bound the procezs UP{-) in the manner given beiow.
is used only in the theorem staterent and as o todhnical devio

tn the proots. It does not attect the result. 't, “or oot

1

scquence o bounded nrocesses converges wogaly, then
the original seaucnce converges as desired. lLet b\t~, dencre s
AR couiloto

continuous function which 1s zero in  {x: X

unitvy in  x: 'x} < Ni, and is infinitely difforentiable.  Tefine
, N ] J

Ny
n )
N \,,y\‘:‘y,N ) AN l:y,.\',‘f\' NG e
(3.1 Un+1 Jn [YdUn + Y R L P RN R
N Y.\ .. N - AN .
3 Y = ’ : . SO ¢ Pyt , ;
Here .n//T Un defines & . fhe sequence  {1U " s
stopped once it passes N + 1. let U*’N(-! be the piecewise

. N . )
constant process which equals UK’ on the tntervals oy, n,+,1.

N - .
In Theorem 1, for each N, A stands for an opcrator oi the {owm

(3.2) whose coefficients arc continuous and ecqu . {(hose of the
N

operator A in the set ({x: |x| < N}. The CApPsoTLions Lg' and

Parewr s tmon s

b




A7>N  denote (resp.) expectation conditioned on

12

RN o N
n .

7‘ b

T,N 0N Ny

P0Gy ot and

AT Ne) = (N Emyer) - £ 1/

Theorenm 1 is an adaptation of Theorems 2 and 3 of [2] to our
nroblem. We use Z = set of functions of (x,t) with compact
sunport and whose mixed partial derivatives up to order 3 are

continuous.,

3¢. The main background theorem.

AN

‘heorem 1. Assume the conditions on the coefficients of A"

[

A ¢iven above, and on the uniqueness o the solution of (3.1). For each

integer N and f(-,*) € 22, suppose that there is a sequence of

T
random functions fY’N(-) satisfying the following conditions:

N

£'9%¢-) is constant on each [Yn,yn+Y) interval and depends only

the "canlitiernal average Jlifference' operater

and

VN
1'

VLN . .
; , i <n, there. For each N and t.« ~ (recall

v 0

<,

b

u N = yYuN

el = (nY))
(3.3) sup EifY’N(nY){</», sup E]AY’ka’N(nY)! < e, ny <,
n,'Y n’Y
Y,N

(3.6) Elf (ny) - f(U,Z’N,nYH + 0,

v
=

EIA N Ny - & s ANl N -0 as

and ny ot

SRR S —



Then if {UY’N('), v > 0} is tight for each N, and UY'N(U)

converges to some U{0) in distribution as - . we_have

Uiy ~ xt(+) weakly, where ~x{ Y solves {3.1) with /o) = Brin

The sequence {U”\(-), v > 0% is tight tor each N 1f for

—_— } ’

(3.7 lim P+ sup 't""N{xl'V‘; - f’(b’;’;\,nﬂ‘ . T, eacrn
IR 1n‘_t0

(3.%) tim Tim PO osup 1A ¢ Ym0 ! s k0 = o,
K== y>0  yn<t,

e e -
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1. The Limit Theorem
As noted in Sectien 2, the magnitude of the initial crrors
must he commensurate with the ¢ain  ¥Y. Otherwise the system of
tioure 1 will not function for small! Y and 7T. VFor simplicity
assume that there is a random variable Uy such that rO/VT + U,
as ¢ =~ 0. In the work connected with [1, Figure 9,34}, i+ wis
implicitly assumed that UO = stadyv state solution to (4.0} v ow.

thegrem . {UY(-)} converges weakly to the solution /..

of the Gauss-Markov equation (4.1), as vy -~ 0.

(4.1) dU = -oUdt + vdB, u(d) = U

In (4.1}, E(-) is_a standard Wienmcr process and (see above (I.4)

for the definitions of gn,g) and v is given by

T4

<
"

26le, (0,00 - w(0,0) e (0,00 - g(0,0)]

+

Lo (0,0) - ¢(0,0317, any n > 1,

,
Note. The form of v is similar to that obtained formally by the

method of [1, p. 445-447].

Proof. We need only verify the conditions of Theorem 1 for

the process {U;’N} of (3.4), for cach ftixed N. The proof is

relatively straightforward. The systcmatic way in which the fy’N(-)

are constructed is typical of the method in otlier problems. Henceforth,

-




the test function (', ) € _/ is fixed (recall the definition o

72 given above Theorem 1) and for notational convenience, we omit

hY
and !;' .ohe o wi

A~y N

. . . N
the superscript N on everything cxcept A

get the perturbed test function f’(-) in the fForm € iny) -

f(U;,nW) + f&(nw\ + f{(nv) + F:(nY), where the f? arc to he

chesen sequentially such that the conditions ot Theorem I hold.

Start by applving &y,\ to -,
TYLN Yo , Y . . Y P ¢ o
(1.3 R S ! = y - { Thyny el koo
(1.3) ; f(Jn,nr) th(Un,nv) + oY) Y u([n n Ao
TS Gy Ne Y O
D N L T G N R
(Uyan) b Y N
uu- n 2 YLN Y C
Y "——"'—Z"" it b\ (Un ) !,n (’ n ( n- 1 1) '
v
+ .
°In
The o;n is a remainder term in the truncated Tavlor expans:on i

i

" Y _ ‘.\.’,. §/:'LY \ |
(4.4 L R N N L A SR P
For future use, note that (owing to the properties of the hieltr ;
process) for each 10 <o and N > 0,

. Y
lim sup |o

/Yyl = 0 w.p.l.,

(4.5)

3
o

lim sup E{o}n/Y!
Y-»O nY<_t“ ‘




iFal

11 oin introduced below also satisfy (4.1

nlv the tirst and third terms on the right v 1.5y can be
- 5§ 7 N e th 1
rart ot an operator such as (/80 + A7), Mhe 1 and 5'h Lo o
, . Y . . ;
i 1.3% depend on the noise 5 (1 ,A ) as well as on it nr o oand
n> n-1’"n n
\ . . . A .
nee ! to be Yaverayed out'”. The perturbation tU 12 choser oo
0 ~ - +
"averace out' the term. Deidine
uu
Y
v o (U ,ny) e . . ‘
. -1 N uus n ’ U S T \ . e .
¢ t Vo= —— e : Y Lo S B i
R ‘o(n’ > bNa%).“ “n {si(n~1'n it
- =1 :
A2 N : , . :
uu-n’ H,HNFLL’”liytﬁ T E YR
Nt ns n-1'"nm nton Ty '
!
For our particular problem, due to the truncation cffects of ho 7, ‘

L e < 1A for small v and the signal and Wiener proce < components

<

- .t - . . v Y . .
Nt gi(\n-l‘\n) {for j > n) are independent of {si,_i- n,Ui.g < n-

Jhus, the sum in (4.6) reduces to a single tervm. The general (and

- . . . Y . .
nore cemplicated than needed) summation form for 0 is introduced
here only because it is the apprenriate form of V:iny” Yor the

ceteratizations of Section 5, and will! taciltimte the discussion

there. far the same reason, ), 0 are introduced in a summation form

]

heinw, even though tor the problem of this scction, the sum reduces

-

to 4 single tern.

*thn cxpectations of the form T ;}(Knvl’{n}' etc., arc written, we
ey A .
mean (L Qj(x, A ]Xﬁk 1’X';‘ ; 1.¢., the An-l'xn are treatced
n- n

as parameters and considered to he fixed when compu-ing the expectations.
Also g}(x

. - : \f A VY e - vty
Kn), j > n, is defined by ’j("” Vowith A An~1‘ \ L

n-1°




Now, applviny ﬁy‘x' to [g(n}) vields
SYLNQD Y, N Fuu(U:Hl’nY+H v
Ny = AL TR oS S ’ 3
YA foknw) \Ln 5 bN(Un+I

Y 2 ‘ 2
'[(5n+1(xn’xn+1)) MNP RANER S R

. Y
3 fpu(Un,n\)

. _ Y Y,N Y, . .
(4 . /) - ————-‘—2—‘“"—“ b\,(Un) [En (Qn ( 1 ] [} ‘n ‘J
- N
g N 2
N A
on the ripht _
The part of the last term’containing the IJ’N is the negative
ot the next to the last term of {(4.3). Also,
(4.8) YEEY (L oA % = YEETO LA NP v o).
T “*nt n-1’ n’- n-n'n
For future use note that for cach ty > 0 and 1 = 0,
: Y _ . Yoy -
(4.9) lim sup (fiﬁﬂJ[ =0 w.p.1, lim sup E[f (V)] = 0,
Y+0 ny<t Y+0 ny<t
-t0 0
Fquation (4.9) will also hold for the f.f, introduced belok.
Replacing U;+1 and &n+l by Ug and \n' resp., in the

first term of (4.7) alters that term only bv a quantity OIn
satisfying (4.5). In fact, oln is bounded bv (4.10). All the
introduced subsequently satisfy (4.5), but explicit bounds will

be given.
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With U1, 1540,
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Y
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g SRR )
+ ((Y)Ln "n+1(\
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- n’ n

N Y A
B ] i
[1+’gn(\n»l’xn)‘(l+!’

n b

in the

that term has the value :zero, Juce to the

Y
n+l

independence otf the

(A
n’n

)\n+ﬂ e 2 A+

crements of the Wiener process over non-overlapping tine

Next, we turn to "averaging out' the

will be done in

f;(nY)

. SY,N
Applying A

(411 1 AN

where the 01

an

. . Sy
tunction {1
negative of the

to he averaged

two steps. Define

Y ) Y
Y fu(Un,ny)bN(Un)
. Y y
v tu(Un,n\)hN(Un)f
to f;(nY) vields

{(nY) = ~f{(nY) +

YN Y Y Y
+ Y En hN(‘Unﬂ)fu(“n\‘]'ny)gn*‘l n

o
¥ E
. & Fn
1=n
3)',]\'.,\1
n >n

~
VY

L S \\
51(

\
( n-1’

is due to the replacement of n

satisfics (1.9)., The

VY term of (1.3).

further.

first

The

term

midiice

term o
A
n-1’n

An)'

1oty
ot 4.

tern

first term of (1.7

Lt tery

RS

)

(A

of
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> n+l

(4.11)
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The middle term on the right side of (4.11) can be expanded

as

(4,127 % r”‘[f (U )by 'y - (r ,nnb ! N (U’ et

) AL [ S VR
+1 Tt P+l Rt ned 4n’

The component of (1,12} invelvine {f“b\}u can Do owr:

- ' AN
4.1 f 1 Sy A J + N
{ ' 'l u‘ ,nY)b (U ))uhn ’n*l(\n’ n+1)gn( n-1’n’ ol
= Iy Nt Yo ! Yo
(U ,ny)h L 2 utn e Oyt O ey .

Tho component o!f (1.12) involving (Fuh\} can he written as

Uy) v,N b (b A ) « Od o

il Fu(Un’n”b M "n+l1> n’'n 6n

the first term of which equals zero by virtue of the independence of
the fncrements of the Wicner process over non-overlapping time
intervals,

Next, Jefine f) by

-

Y, .

v = vir L) b, ! LS C NI \
2 u._ j n "k ’

A 3
n’ n »ﬁ n-1"'n

.14 eV 5"
; B LA T A

n"itn-1tn

r i ! Y, N ¥
+ A f U

! u( n’ny)bN(Un) 2 I 1+1 n’
By the comment above (4.14), the second sum is zero (in the more
general cases of Section 5, it will not necessn-ily be fero].
Again, by the independence of the increments of w(-) over non-

overlapping time intervals,
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LN Y - pr ) Y A PR

Ln ‘k(\n'xn)gj(An—l’xn) I‘E’k()\n")\n)(’j()\n—l’An)‘ (k )

tor i >n + 1 and also for j =n 1f k >n + 1 (in which case
both sides of the above equations equal zero). Thus (4.14) eauals
C oo x N \ ) oY Y .
RERE Y(fum snid b (U J) (¥ n*l ) n n 1’ n) Lgn+l(‘n"n"n‘ n~1‘xx '

It ¢can be shown that

"h -(4.15) + ol + o(Y).

fy(nY) N

Cne component of (minus (4.15})is the negative of the principal

part of (4.13), the other component is the "averaged" centering

tern.
Yoo
\lso, {2 satisf{ies (4.9).
Summarizing the above calculations and recalling that
"ty = £l ey ¢ L € (), for each oty « om, N < o,
n . N
1=9 J
.
(4.16) lim sup EIfY(nY)- E(U;,nY)! = 0, }
¥>0 ny<t, A
) . i
lim sup !f](nﬂ - £(U_,ny) = ¢ w.p.l. !
Y>0 ny<tg |
Also, taking advantage of the cancellations in R\’K[F¢fg+f:+f1}, we 4
have
AY,NCY - Y - opY Y n
ATTE Y = £ (U, ny) - (U AU b ()
! Yyp 2 |
(4.17) * s (£, (U ny) by (UDEG A 42 )) ﬁ
(U], mY)by (U) B 2N, 0 5T ) s o) /Y
u n’ N*"n’’u *n+l n°’ny n-1’n Sn '
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Changing ‘o nel to zero in the right side of (4.17) alters that
term by ¢{vY}. Define the operator AN hv
202, ny)
. . \ Vo ,NY 2 " N
S TR S U 0 U D | R SN LN P!
(=% AT n,nr) [Sr 5 Suz kN(Un,xl. Bulf([\a‘n\'
= first tour terms on right of (4.17), but with ht e
replaced by 0.
; Rv the propertics of bN(')‘ we have vg(u,t) = v7, kw(u,t) = on
when u < N. Finally, since the solution of (4.1Y is unique,

all the conditions of Theorem 1 hold and the proof is completed.

e




5. Extensions

5.1 General noise and intersymbol interference. Only an informal

el

discussion will be given. With the appropriate scaling, the methed
i i3 sinilar to that oi the last section. Let ST(t) + wT(t) denote
the i1rnnut, where ST(-) = input signal, VT(-) = gstationarv input
noise with zero mecan value.

Supposc that the channel memory is given by a functien hq(-).
To keep the svstem from degenerating as T » 0, we usc hT(t) =
h(t/T) for some transfer function h(-). TFor notational convenience
assume that h(-) # 0 only over a finite interval; in particular
let h{(t) = 0 for t > (Q for some integer Q. Let the waveform

transmitted in the interval [iT,iT+T) have the form siq(t—ii?,

-

where q(u) = 0 out of [0,T] and {si} is a stationarvy

sequence. Then

o~ W

[t/ t )
sp(t) = § s J h(tT‘)q(«i'r)dr.

Define

t t/7T
[

sT(u)du, S(t) = ST(r)/T

ST(t) = I ST(VT)dv.

0 -0

The noise model is based on two considerations. First, for

simplicity, we want the process WT(-) to have only a finite memory
(convenient, but not essential). Second, the c-nsiderations

discussed below (2.3) still hold here; i.e., we want




e 1 o Y2
var «T(s]ds = X7 = T for some ¢. To accomplish these aims
20 ! et
we introduce a stationary random process w1, define Nt o= Piods,
0
assume that there is an inteper K osuch that for cacho 1,
I N N tol is independent of v s, s ty * R, and ~ot
> ‘\t‘ = v(.t i
!
The finiteness assumptions connected with R, guar. ‘
: ) . VLN L . . P
that the sums Jdefining fi in Theorem 2 contain onty o tinite :
¥

number of terms fwith the signal and noise of this subscectren used:.
The "tails" of these sums are all cero by the finiteness and oo

dependence assumptions. »
|
7

= h




[ )
Y

Next, define ¢ (A A"Y, p(r,0 "), u'. (+,a") as above (2.4,
S s I3 n'’n

but with the noise and signal processes of this subsection; c¢.y¢.,

g i+,+") has the representation

St LVTY = IS (nAlHA+R ) - S(ntasd ) o+ Yin+l+i+a') - win+li+n )i
- 'S (n+2-A400) - Sin+l-4+X) Y (n+l-AeA Y ‘{(_n-#}..',+a\)f
rai © o= d EoUR R 1 < S h o> 0 for Werte s
Again, set ~-¢ = qv ¢ (A,\) =) and suppose that « , for otherwis:
the svstem (2.1% will be unstable for small D L

We will not vo into the details, but the method ot Theorem
works here also. Given { € 2/, the general (finite) sumpation

forms c¢f the f;'h are used to get the perturbed test functicon

-, \ B . . :
£ (recall that superscripts N were usually omitted in

Theorem 2). Re need to verify that (4.9) holds, and that [4.5)

- TN JPa.
holds for the o1 error terms. There can be verified under
1

reasonable conditions on +{-). Assuming this, Theocrem 2 holds

~

but with the first term of v~ replaced by (the sum contains at
most  aax(G,R}+1  terms).
T y
vOERe (0,0)5(0,0)
- A 51 LUy VS ) .
k=0 k+1 0

5.2. Random clock drift. For simplicity, rcturn to the problem

formulation of Sections 1 and 2, but supposc that the transmitter
clock drifts. In particular, lect the signal take the value

s(t) = s; on [li’fi+]) rather than as [iT,iT+T), where

B 60’ Tn+l = Tn T 6n+]‘

where §, 1s # .cro mean random

1,




o4 ;
n th
variable such that Gn/T is small. Write &5 = 5 6i. '
n i=0 ] |
sy S ot e The svstem 1s given by Figure 1, and “h still
. - N N - N . . :
denotes the estimate of the epoch 60. Sct T [L”-u”)/l. We \
use the aleorithm (2.3}, (2.4) which we write in the form
= L+ oge (¢ T, €./T).
n+l n n' n-l/ > n’
The integrator dumping timing is still given by Vigure [ but with o
the current Jdetfinition of JEH}. Figure 3 is merely a trauslation o
of Figure 1 inte the "t " notation. In A
.
articular,note that n+A)7T + ¢ = AT + T+ - and 3
p ’ ( ) n-1 ’ n-1 n ny A0
(n+1-21 + - = (1-8)T + 2 T + ¢ - & . |
) n-1 (1) n-1 n “n #
Define g it V) De (e T,S /T)/T as in Secti
anl n-1’ n) n( n"l/ s n/ )/ cction

Reterring to Figure 3, note that

i —

P CIPUUI GRSV P TSP T

g (1 Y o= o w(sHa o 4T

/T - TY -w (. .
n n+1/T 6n+1/1) h(A+Xn +1 /T-& /T

-1 'n n’'

s S8 8 VT e . - .
N Sn[(l n-1 ( n’ n+1)/1' $n+1(\n+“ 'n+1/T)

{5.2) - iw(1~A+An+Ln+1/l—6n+l/1) - [w(l-A+\n_1+1n/T—§n/T;

P ey SIS R R S

+

s [(A—Rn—l+(%

n e/ Sn+1[1'£+’\n_én+1/'”[’

]

gn(k,%') is defined as in (5.2) with parameters A,\' replacing

n-1*ps TESP. Let g(A,A") = Eg (A,A"). Next rewrite (5.1) as

. _ ) o : :
(5.3) Aae1™ Mot Spa/T P e, O )

. Y _ Y . . .
Define w by 6 ,\/T/Y = /¥ v|. Define 5!(3,\'), Ul and U'() as




. et . e -
| 20
bove o PR T coe 4o s
above 203, but using the S of 5.2) et < = - I v,
and assume that > 0. As in Sections 2, 4, we work with the
partially Vinearized system, which is
r Y ) - Y ’-
\ Ty = ! 1T + [ >
v Yoy LD 1 ln v ‘nn-te nl v "
T fno* the “lincarization orrors' o vy . , .o .
L N 1SRN SineariZation orror:s O to Zore on xiH} Ut e
(mrerval n: n T R "
Fov the sake of simpliicity, tet there bhe an N, net denonlin,
cn L ar Cosuch thaot T 1soindependent o
, '
. o N Yoroeach oL UhiTL ds apsed anlyoto oassuye o0 oar
a3 - ‘
the sums .77 detined in Theoros 2 have a finrte number of non- !
TOTO terms., Wlse, supposce that © i t= ndevendent of W
!
(thesc assumptions are not necessary, hut simplify the di< ne<on ‘
i
In order ro eitfectively track changes in the timing, the JviTr eoy- o !
N t
PR - N - l
v?nf must be "of the order ol " {loesely speakined.  In parvicular, {
we assupe that *«i‘ 1s statlonary, with o covariance not depending <
oan t.
The method ¢f Theorem 2 ¢an now be anplied and the imit
provess is
BRI dito= -oUdr o+ \']dR‘
M - - . - .
where (v~ is detfined in theorem 20
o
> z oYl - o)
(5.6 Y B R /20 T S Y B ]
) 1 I W e Ty
1=1
o . - . Foud ’ L.
The added term in (5.6) is due to the [V - clack drift process.
‘ Y .
If iwn} were not independent of wi-, then there would be an
1 additional "cross" term in (5.0).
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ABSTRACT

Communication systems often involve differential eauations
models whose inputs are noises and signals with wide bandwidths.
It is frecuently of interest to approximate them by some
Markov-diffusion process, since then many analytical and numer-
ical methods can be used. #Here, recent results on getting diffu-
sion approximations to systems with such inputs are applied to
three classes of detection systems which are very important in
applications: 1). A phase locked loop with a limiter; (2
quadricorrelator with and without a limiter (the function is to

track changes in phase and frequency):; ‘3) a 'scuaring' loop,
whose purpose i3 the tracking of the carrier frecuency, despite

the carrier modulation. 1In (3), a type of pulse phase modulation

is used. The method is natural, svstematic and relatively straight-

forward. Under natural scalings of the signals and noisecs, the ap-
propriate iffusion approximations (for band-pass, but wide-band
noise) are obtained. The approximation is in the sense of weak
convergence. The first two problems have been hard to analy:ze
owing to the nature of the non-linearity, and the results clearly
indicate the advantage and disadvantages of the use of the limiter.
The third problem has been difficult to analyze, partly due to the
periodicities which occur naturally in such problems. All three
classes repregent widely used and important systems, and much in-
formation can be obtained from the limit vrocess. Yor examnle,

the results show that the use of a limiter can actually improve

the tracking ability of the systems, when the noise is small. The

Y

—




system signal and noise models to which the methods can be applied
is much broader than those used here. But the results, together
with the results in [4] for different classes of problems, illu-
strate the great notential of the approximation methods for prob-
lems in control and communication theory. In certain cases, the
limit processes are of the type which have been obtained via more

formal arguments.
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I. Introduction

Diffusion approximations toc the output and state variable
processes for several types of phase locked loops (PLL), Costas
loops, and related systems are obtained when the input noise is
'bandpass, ' but with a wide bandwidth. The systems are commonly
used to estimate and track the phase and frecuency of received
signals (with additive noise). There is a vast communication
theory literature on the subject, and there are very many useful
methods for the analysis of such systems [1]-{3]. Yet, it is
only recentlv that rigorous methods for getting the diffusion
approximations for more complicated and non-linear systems have
become available. We will use one such method here.

Three important cases are of particular interest where, owing
to the nature of the non-linearity or other system feature, the
analveis has heen Jifficult., In the first two cases, the system con-
tains limiters (Figure lb), a frequently used type of non-linearity.

Markov-diffusion approximations to the output and state pro-
cesses of non-linear systems with wideband inputs are a major
concern in communication (and control) theory because a large
number of analytical and numerical technigues can be used on the
approximation. The original system is often too complicated for
much insight into its properties to be obtained otherwise. The
fact that the bandwidth of the input process is often wide allows
diffusion approximation or averaging methods to be fruitfully used
to get the approximations.

Reference {4] illustrated the application of the general




method of [5] to get diffusion approximations for several standard
problems in communication theory. Using a related result, the in-
vestilgation is continued here on the different (and perhaps harder)
proklems cited above. Reference (6] extends the result in [5] and
vrovides a simpler proof under simpler conditions; but from the
point of view »f applications, the theorems of [5)] and [€&: arc

used in exactly the same wav. lHere we use the theorem in i6], be-
cause the conditions are simpler. 1In Section IT, the main back-
ground theorem is stated. The basic idea is that the originail
system state, xL(-), is parameterized by t, and as « - 0, the in-
put noise bandwidth (BW) goes to ». Under reasonable conditions,
the basic background theorem allows us to conclude that xi(') con-
verges weakly to a particular diffusion process x(*). Section II1
deals with the basic phase locked loop, with and without a limiter.
3ection IV treats a form of auadricorrelatny with no limiter, and
the limiter is added in Section V. (This system is a more sophisti-
cated form of phase locked loop. It is used to track when the
frecuency errors are larger.) In Section VI, we treat a "squaring
loop"” whose purpose is to accurately track changes in the carrier
frecuency in presence of modulation, and we investigate the effects
of the carrier modulation on the tracking errors when the noise in-
tensity is small. Despite the mathematical nature of Section II,
the basic results can often be used in a rcelatively straightforward
way .

Owing to the differences in the problems treated here and in

Py




(4}, and in the types of noise used, many of the details are
different. We concentrate on the differences, building on the
results in [4] where possible, but often omitting details where

they are similar to those in [4].




II. Mathematical Background

We suppose that the reader is familiar with the weak con-
vergence terms and ideas as used, for example in [4], Section 2.
Formally, suppose that the system is given by iL = Ht(nL,x&).
where n° is an input noise process whose BW » « as « » 0. We

. . . r.
are interested in showing that x (+) converges weakly to some

il

diffusion xi(+)

dx = u (x)dt + 0(x)dw, (2.1
with differential generator A = . ai(x)ﬁ/Axi +t 5 z aij(x)Hz/Ax;ij 1*
i llj - '
where a(x) = {aij(x)} = ¢(x)o'(x). Define the truncated process ?1
: IS g ‘!-‘
x“ Ny by %N = 5 (" x"Np (x" Ny, where b (x) = 1 for 'x < N ‘

and equals zero for ix! > N + 1. Let AN be the differential gener -

J
ator of a diffusion process xN(-) with coefficients a\(-v,TN(-) equal

to x{+), and <(+) in {x:]x| < N}. TIf [6] TNy s xN e weakly
for each N, then {xi(-)} - x(+) weakly. The truncation is used
because it is easier to work with bounded processes in the »yeraf of
the background theorem. It is a technical device, not an assumption
on the original problem data. Next, we define some terms and then
state the basic background theorem which is to be applied in the
seaquel. bN(~) is assumed to be continuously differentiable. §
Let<ib denote the space of real valued continuous functions on ]

£

~

R" with compact support and 'Y the subspace of functions in nh [

0
whose mixed + partial t-derivatives and ¢ partial x-derivatives are

Loz b .
continuous. Let {¥ ! be a non-decreasing sequence of o-algebras
t




. t : LK
with &?t measuring n (s), s < t!. Let & denote the class of real

valued (progressively) measured (w,t) functions such that if «(«). &,

then sup E‘git) < =, E'g(t + ¢) - g(t). - 0 as & . 0, and g(t;
t
depends only on -nc(s), s < t'. Let i denote expectation con-
X t .
ditioned on#* . We say p-lim f (-) = 0 if sup L f (t) - - and fo:
t L0 >0

« -0 .

each t, E'f (t)! -~ 0 as ¢ » 0. Define the operator A~ with domain
St o S
&(a Yas follows: gv Z2(A7) and Ag(+) = «a(+) 1iff g(-) and a(-) are
E gl + %) - g() :

in& and p-lim { - g(+)} = 0. So, A" is a type of

~ _O A

infinitesimal operator. The following theorem is a special casc

that in [6]. A more complicated form was used in [4].

Theorem 1. Let (2.1) have a unique solution in the sense

that any two solutions induce the same measure on the usual space
.‘\‘2 . 3
2

of continuous functions. Fix N. For each f(+*)v % let /
be a seguence {£°'N(.)1e & such that
p-1lim %fb’N(-) - f(xL’N(.),.)l =0
£->0
~ 3 J I \\‘ - SN\ )
p-lim {ASES/N() - AY + st N, 0 = 0
€-»0 '
Then, if xSV s tight for each N, 'x"(+))} converges weakly
to x(+) as - » 0.
Note. Tightness is often not hard to prove. For our case ‘he
N .
method of [7] as adapted in [6] can easily be used. The 0 "7 () !

are found by essentially the same method as used in {4}, {5}, [6],




2 .
(ty = £(x"'N(ey,t) + : £ Ny,
i=0 or 1

and [7]. We use the form £°'N

where the fL'N(-) will be defined in the following sections. Hence-

forth, in order to minimize notation and detail, the N and bN will
be dropped, and where needed we simply assume that the processes

x“{+) are bounded (as they are bhecause we work with the truncation

x“ Ny,

e " S




I11. Phase Locked lLoops with a Limiter

The system is described in Figure I. First {Section I11I1.1)
we work with the smooth approximation g,(-) to the ideal limiter
¢(+). See Figure la. We get the diffusion process limit x(-)
of the sequence {xg(-)} = {VE(-),GE(-)} as =t = 0, then « -~ 0.
The derivative of gl(-) is assumed bounded by some K/ and the
filter in Figure 1 is simply the state variable representation of

an arbitrary low pass filter. In Section 111.2, we work with the

hard limiter g(-:) of Figure 1lb directly. The 1limit diffusion is

the same in both cases, and we develop the result for both cases
in order to illustrate the robustness of the performance of the
svstem of Figure 1 to mild changes in the non-linearity. This
robustness is clearly necessary for a practical system.

In analvses of PLL's (even without limiters) it is usually
supposed that the input noise is wide-band [9] and the limits sought
(explicitly or implicitly) as the BW » . It is possible for both

A, and 9 to depend on time, and the signal might then consist of

the variations in 9  or Ay . But for our calculations in this sec-
tion, AO is held fixed and dh(-) = d(+), a differentiable function.
If a more general 9(+) were used (say a right-continous Markov
process), then the infinitesimal operator of that process would
play the role that the differential operator plavs in the sequel,
The result is the same. We are interested in the problem for large
input noise and signal BW, say of the order 0(1/qi), wvhere q, ~ 0

€
as ¢ ~ 0. Thus the center frequency wy must tend to = as « + 0.




. t 2 . .
We use wg = wo/c . r-/qE -~ 0 as ¢« > 0, so that the center freaucncy is

large relative to the bandwidth, as in practical svstems. This
scaling 1s appropriate for the problem and consistent with heuristic
methods for analy:zing such svstems. The gain L, = L/4q_ 1s nceded,
either before or just after the filter, because otherwise the input
to the VCO© will g0 to zero ax « - O owine to the ettects of the
wide-hand input noise [4].

We next descrihbe the noise model. The noise model is 4
standard one for band limited noise and is suitably scaled for our
method. We suppose that the noise is Gaussian, although this 1s

not always necessary and the modification of the result for non-

Gaussian noise will be stated when available. let z.(:-), i = 1,2

-

i

denote independent real-valued stationary continuous Gaussian
processes with unit variance and a correlation function ¢ (-
which decreases to zero at an exponential rate. Let ¥y = 1,2
be random variables, uniformly distributed on [0,27] and such

that {:i(-), Y i = 1,2} are mutually independent. Write
2
:i(t1 = :i(t/q;) and define the noise
‘ , ¢ .
nT(t) = [z](t)cos(wst+0,) + z,(t)sin(wit+d,)]o/q,. (3.1)

Tf S{w) is the spectral density of SPARD then the

- 2 o [ .
spectral density of nb(-) is S(qz(W-wS)) + S(q;(w+w0)). The choice

of Wys &y Ay in any particular problem is determined hy the problem

3

The VCO (voltage controlled oscillator) is an oscilllator wvhose
frequency deviation from a 'central' frequency is proportional to
the input signal.




-

g -

data and will be commented on helow. For simplicity we set L=h,=1.

Their values can be incorvorated into ¢ ysce Fie. 1).

We now make some simplications. [First, we note that the
. - [
center noise freauency <, <an he changed to any “1 such that
[ [ p . . .
qt!w1-~”| » 0 as v - 2, without altering the results.  Next, we
drop the = from (3.1)-for notational simplicity. This Jdoes not
alter the results.  Alsa, For notational simplicity we specialise
the noise to the followine Gauss-Markov casco oty s C]lj(t),
d:i = A!Zidr + R,dw, where wi(:) i1s a standard Wiener process and
i
- . ~ [ &
the roots o \l are 1n the open left hand plance. Ft denotes
.. . -t - P -
conditioning on 27 (s), s ~ tr, where I(t) = x-l(t),h,(t)\ and
. -2
. {t) = -.(t/(l_).

Assuming (for the moment) that the multiplier device does

nothirg but multiply, its output is

3 & . ~ e & ~E P
T[:](t)(_cos vl o+ cos(2wytroT)) + oz (t)(sin(-9 ) -
¢ A o

~ e . ~ . L Te &
#osin(2upt + 8]+ 2 [sin(0-0%) 4 sin(v et e20 0],

In analyzing svstems with practical rather than with ideal multipliers,
it is common practice to assume that the multiplier has a "low pass
filter" incorporated within it, and to drop the terms in (3.2)

N £ . . .
containing Zwﬂt. We make this assumption als<o.

We want to retain a structure which allows the signal BW to he

2 . . .
0(1/qb). In fact, a filter would often bhe used before the multiplicer

to limit the input noise BW to that of the signal. Thus, for the

moment, suppose that there is a filter in the multiplier with cutoff




— .

_lﬂ-

. 2 € . . . .

frequency 0(1/q;1 ~< :”0' In the theoretical analysis (see Section
L

1), the true v°*, v oare actually multiplicd by h\(-) and limits

taken as N - v, then ¢ » 0. Thus, in the analyvsis, the derivatives

are bounded unitormly in +, for cach N, This fact can be used to

show that the terms in (3.2) containing Zwat have no c¢ttect in the
limit. RBut 1t is casier to =imply make the assumption in the sen
tence below (3.2Y. ATl other filtering actions are incorrorated
explicitly into the tilter box in Figurce 1.

The input level AO can cither be constant or time varving. he
suppose for convenience that it is constant, and note the tfollowing ,
for the time varving casc. Lot Al(-) denote a bounded process with
mean Y\lft) = R”. {1 the mean value R“ is periodic rather than a
constant, use the avithmetic mean over the period instead ot the
mean value.) Supposc that the input modulation has the form '
Ayt = Altt/qi) (bandwidth Oil/qi). Then, loosely speaking, if
AI(-) is sufficiently strongly mixing, the limit results arc the
same as for the constant Yy case, but where &n replaces A“ in the limit
formulas. The calculations required for the proof use a combination
o the ideas of this section and of Section VI, where we consider
the erfect of variations in Ao[') on the errors in carricr trequency ‘
tracking, when a "squaring loop'" is used.

The maitn result is the following. As e« = 0, {v (-),49 (Vi
converges weakly to the diffusion process v(-),%(-) given by

B
[.e., the conditional distributions of A, (t), A, (t+s) niven
‘A, (uu < 0F converge fast enough to the uncondftional distri-
butions as t, t+s » o,
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A, ; ) )
dv = [Dv + = HJK; sin(v-9)Jdt + H oy dB (3.3)

dv Cvdt, ¥y given,

where B(-) is a standard Wiener process and

%

2 [
ae = ) Y - - 7 ( > (0 - 7. . ’, b
% 4 jo[lkﬁ(u) 0, z(0) ( P{ (u) < 0, %(0) 0t] du
= % J sin-lytu)du (5.4)
0
where (-0 is the normatized (such that {0 I correlation
{function of ii"). If v(t) = exp -a't!, a 0, then the intepral
a2 )
can be evaluuted and 06 = 2 In X/a 4], scction 0.

L

For the svstem without a limiter (and L/qg . replaced by

b

a2 unity gain), the limiting process is defined by

Ao
dv = [Dv + H sin(v-8)]dt + o HdB,
(3.5)
dv = Cvdt,
B < x
vhere of = 5 / p(u)du.
1 Ty

Note the "1/0" effect in (3.3). VFYor small ¢, the system
with the limiter is preferable to the system without the limiter.
The result (3.5) remains true {or non-Gaussian noise. The 1/¢ effect
has been demonstrated by simutations on systems similar to those of
this scction. These simulations suggest that the limit results are

often 'worst casce', in that, for small ¢ ~ 0, the actual =vstem

often performs hetter than indicated by the limit results. In




particular, if the limit results indicate that the limiter improves
the operation, then the performance might he even better with the
actual system, 1t the effective value of ¢ 1s small. An equation

of the form of (3.3) can also be obtained for non-Gaussian trocess,

under suitable conditions on the :ii-\. then 08 will bo pgiven
bv the top line of (3.4), but the v/% in (3.3) will be replaced by
a different constant.
Comment on the choice of w,. t,q ,a,7 in a particular pract cal
problem. For the limit results (3.3) with . (t) = exp = a t', bath

-

¢ and a arec needed. Fven without knowledve of these values, (3.3

gives the nrimarv qualitative nroverties. \lso, since the evain L =

1/a, was used, it was imnlicitly assumed that a.  was known. This
bl b b}

5
is not neccessary. We can estimate a/q7, u"/q; and 97 /2a  tUrom

the Jdata (from the normalized correlation tunction, the variance, and
*

. - - r~. ~ .
the power density at center frequencvy. let 1 = (»chLt val
vYa/q., a auantity which can be estimated. Then the /¢ and o of

R

{3.3% are renlaced by va/o and 2 In 2 resp. Thus, prrior knowledye
. 4 ,

of 4y ¢ or a is not needed. This i1s the case for all the nroblems

which we have examined. For the case where the :i(-¥ are Gaussian

but with correlation function ¢(+) going to Zero cxpenentially, the

2In2/a  is replaced hy (4/7) fﬂ Sin'lp(t)dt P4, Section ). The
spectral density of the noise kncar the center frequency) after the
limiter is approximately qi(4/”) JU sin_]»(f)Jt. a quantity which
can he estimated. 1 we let Le be proportional to the inverse of
the square root of this quantity, the "1/o effect' noted In (3.3) s

maintained.




[11.1. The Smooth Limiter x,(-)

Now, we restrict attention to usc of the smooth limiter ¢ (-)

and coer the lirats as o« o+ 0 and 4 a9, When v 0, = » 0 i~ stated,

we mean thot rotino4oand -0, but in <uch & way that q /<o hq  tor
L

Sene G A Ihis condition can he weakened.  hroppany the 2wt

P . . . % 2
components of (3.2), the input to the filter 1is 1Hqt.i(t),wt)\,umere

e.a€ . _ 1 0 e T I + 0 5 gt
u (t,07,v) = ‘N g,u[zqtj (z[(t)cos z5{t)sin 0 7) 5 ~ind
and
. T 1R . € e [
YL = v + HLuu + H(ua - FUQ)
L’E = CVE’

. . €
where the expectation E 1is over the zi(t) only and

ut(t,55,6) = /5 D sin-05) + orq)/q,

Now, theorem 1 will bhe applied. Given the test tunction

ti-) € ECT, we must find a scquence of perturhed test functions
[

{0} (Recall, we drop

satis{ying the conditions of Theorem 1.

N and bN in our calculations, for notational convenicnce.) The

averaginyg method and the technique of proof is the same as that used
I8].

in [4) and o] and very close to that in

Where the details
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overlap those in [4] or [6] only a sketch will be given. For g¢iven
fr+), we use f” of the form noted below Theorem 1.

SIS - .
For . € Y (write x° = x (t)), we start by aoplyine n

- N . v . . .
to  tix ey, In this case the A7 operation is merely a right

derivative

ATr(aTLr) = rt(.\-b,r) R PR D [0 15.0)
- L .t ~e [ ~t
£ LN COIDVT + HPuS e, 3T, 9 () ¢ Hlu (8,0 vt
. [ b
- Du (e, RISADIRE .
E
Only the '"noise term”, f&(xt,t)H(ui - Fui), of (3.6) neceds to be f'
f
averaged out. The other terms are part of or close to components |
ol (Dt + A)t(xb,t), where A 1s the operator of (3.31: Petine !
. 4
. S 1
the first perturhation f;(tj = 1;(x (t),t}, where :
o P € 3 3 Ap .
£5(x7,t) = . dSE_f'(x ,t+s)H[u (t+s,v (t),v(t))
| _,'O t v :
(5.7
& ~E .
- Eu (t+s,v (), (t))]. ]
“ ' 5
Note that the integrand at s =0 1is just the '"noise” term of (3.0). ¥
it

In all expressions of the type Lui(t+s,§tpt),U1t)) (or with I; ;

replacing L), the expectation is over the :;(1+s) only, not over

’~

, . ,
v(t) or x (t). Via the change of variahles s/q; > s, (3.7) can be

written as

PR AT
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A L, 2 £ 2 e
Q podsh T i s trqTs U (s, (ty,vit)) -
e 0 t v t A [

v

!l,\i.t-u[fs,f (e, ()

which is beunded in absolutce valuae by

Ceg YL o2 JZot/qnid (5.8
[ [

(<ee [17]) for a related calculation; here we use a different noise
model than in tl¢], and a multiplier rather than an adder. These
require somewhat different details and yiceld results which are not
directly deducible from the results of [10].) 1t can be checked
that fi(-) € SK(R£) and that (write xu(t) = 1 the term denoted

simply by the bracket { } is the integrand in (3.7)), and the sub-

scripts o, vand v still denote the partial derivatives or gradient)

¢ . ~ C ‘.L oo Vo
N ~t"\"(xL,t)}l(u:(t,r)L,d(t))’ bu ftoo s

s

el

Iy
r+
ft

! l‘, o0 - .

v odsi bru () + | dsEY PoY ) (3.9)
n ot ' o ¢ -

o 1 odsir it
JO(% t{ )v\ (t)

The first term of (3.9) is the negative of the '"noise term' of (3.0).

Now, cxamine the second term of (3.91, which we write in

preater detail as (see below (3.10) tor the defnitier @ ot the new terms
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fn

[N & . s N
CdsES T e (B g [tes] - B [tes])Cv (1)

+ ,L_A : lef! - e e € +a .. R [ 1C"'
qtjnus\fx ,t >HHPTgJH+s]Y (t,t+sy - [ga[t+>]y (t.t+s) vy
13.10)
wihere ¢ (uj = jﬁ;(uﬂ and 5 (t,tes) = - :ﬁ; (YT(Ub(tl, AR ETER
‘V\U s . - ) e
s~  COos fv{t: - U {t)) . In {53.10) we used the definition
. A y
Y o N w O N ’ NE
[tes] = T VU (t),z (tHs)) ¢ o= osin(v () ooV ()
3 ..
for the aryucment of gu(-), and the Yj(-‘ are defincd by
3 . "t t "
\‘I'(U,ZL(HS)) = [:;(tﬂ‘)sm o + z (t*s)cos 0‘1
AN 3 £ “t t . "3
35(5,2 (t+s)) = [z (t*s)cos 9 - z,(t+s)sin O }.
. ’:L
Ihe sccond term of (3.10) occurs since g [t+s] depends on WV ().

Now note the imvortant fact that for cach {ixed t, the nrocessces

Y;(r{t), =" t+.j) and Y:(U(t), :L(t+-)) are independent. lhis
pronertv, which will be used f{requently, is due to the Gaussian as-
sumntion on the :i(-l. Without it the G”dH in (3.3 would bhe
rentaved by a more complicated expression.

The tirst term in (3.10) can he shown to satisfy (3.8), and so
does the componcent of the sccond term which 15 linecar in A“ if (5.8
iv divided by ». By the independence cited in the last paragrapnh,

. . IS .
the cxpectation term, Pg“[t+s]\1(0°(r),:k(t+s)),1n the second com

ponent ot (5.10) is zero, and the conditional _xpectation there




R R

VIt s ey =

: L, ) ey b “
:‘(IL I‘t“-\'.wn,[r“\!r‘.\/qL)\)‘J {t.: (t)).

From this, some manipulations using the change ot variabie
SAq7 s and the facts that !¢ (ud' - Ko oand that ¢ (v = ¢ o
. - T

v

uio»oovield that the remaining component of {(3.19) is bornded Ly 3. <)
cothird term of (3,97 can he treated In 1o Same wavoas 1o

second was troated and with the =<ame result.

S . n - -

Thus  p-1im 2 dy de ternm of (53.9)] = 0,
(Y
20

nlv the last term of 3.9 remains.,  The part of the tors

[

. . & = . . , .
which contains the (Dyv™ + Hbu ) ocomponent ot v is alse bended by ¢35,

Thus, it is nepligible and onlv the remaining comonent of (3.9, which
. . L . £ .t - .
contains the Hou, - Fu ) part of v must be averaged further. We

. . . . . . n . ,
denote this comronent by kK7 und write it in the form (3,12,

K0, S5 )

b

q°

|

- L { ds H'f ,(xﬁ(t),t+s)H- (3.12)
0 vy

[t+s] g, [t] - Fg ],

f:t z - v
thga[t+s] te,




where [t!, [t+s] are defined below (3.10)(the expectation is onlh

over the o [t=s)  term?). Ihis term is not negligable and must ve

W
averaved fuarther. Detfine the second perturbation (51t) = £5. 350 t
B ) r ’
where
i
oL RO - Lt ~ -
flivT ey o= 0 de[EK z,t+:,v£) - Ik {rﬂ,ﬁ]. .13
- i t ’
'.(' bl Ay
It can be <hown that 10t RN TR I ST RIE!
" N
f20 e € 45'\ voand that
PSP 2 « L e : .
ATTS(t) = -03.12) + Bk (t,v (t})) + B

+ {terms whose p-1lim is zero)d,

The last term on the right side i< [1 + 2 (t)) D]ﬁ(qL/ﬂ\.
2.

NE tonds

“he middie term of 15.11) minus H'fvv{xtttk,t)ﬂd
to zero in the p-lim sense as « = 0, 2 » 0. This last vesult
fFollows by the same sort of argument as used in [4], Scction o,
Summarizing the above calculations and using the e =

- - L & . . . .
fox (=), + ](-\ + 50« vields that the two required limwits of

Theoreml held, where A is the operator of 3.3V i.c.,

noLlim [ATFTe) - (ﬁ% + A(xT (), )] 2w
P
o
plnn‘l'l(ww-n,i L, ..
(SR
[

By o], theorem 2, typhtness of ISR tollows trem the

L NI Ty . S ! o .
given hounds on fi(-] and on AT (). thu< . the  ix () -  converye

weakly to the solution ol (3.3) as v - 0, 4 = 0,




b
>
'

JIT. 2. The System with the Limiter of Figure 1b

Now, the s Lt oot T s replaced by osign(-) = p(-)  and

u_is rveptaced by u” where

N ~ ) P ~ € 1 % N - AL»
WTit,0 ) = 2= sign[e- (z](t)cos b7 - =S (t)sin ¢ F)
T Tq, ’
A -
+ .Q sin(u-v )]

. . ~ L . A‘ . ~
and (3.6) holds (1" used}. Also, bu'(t,v ,09) ;:V/% 1}>51!1(U-U ) o+ 0L .
) t

function F;(-W is still defined by (3.7) iu usedY and (3.8

e N
=IO, ELE)

The

. N
still holds. Note that the Jistribution of {write V

. e Uy A c s
(t+s)sin ¢ + s sin{v-v }] conditioned

~

o

[z;(t+s)cos ¢ -

to M

N(mean®(s), var®(s)), where N(u,2) is the

normal distrvibution with mean v and variance £ and

- - N PO \ [
€, Z < . C 3 . " [

mean (s = »(s/qt)(:l(t)cos v zz(t)s1n JoY o+ %gu sint )
© 2 2

var (== 1 - L Tis/qny.

. . . £ . . i
It iz convenicent to write F](- Join the more coxplicit torm

- . . S R C . .
(3.15, with obvious notation ,I](t) = tltt.d (11,897 (t)) where

f;(t,: Vo) 1~ defined by

ft'(t,6 yU) o= 1 [ f‘(xt,t+s)H { (sign ;)dN(meanL(s). varL(s))
1 Qe Jg Vv
(3.19
* Aya R
- f (sign §)dN(-2-" sin(uw‘),l)fds

L ..k..

e — ey
: -

ol




It can be shown that fi(') EiQBOVU and that Rcfi(') is given

by 135,157,
".'\._‘ - .. E( f’ -
A Hft): SHNCE SR S 1 1V n,oﬂt)y(tn -lmau,uﬂx)y(tnj
1 ¢rb»..c . f e 1 '.00 e, :
+ = ' (L Neads: (t) + — (o4 1Y), ds J(r) C3.10)
4. g t J Qe JO t v
L 'Pu C9'ds V()
Qy 19 ¢ Rty ’
where 1% the inteerand tn (3.7) with u: replaced by u"

When calculatine the derivatives in (3.16), we use the explicit

representation {(3.13), <o only derivatives with respect to para-

the -

meters in the normal density function are taken. No derivatives of

sign function are taken. DProceeding as in the preceding subsection,

the first two integrals on the right side of (3.10) arce bounded by

{3.8). Modulo a term which satisfies (3.8), the last term of (3.10) 1is

0

l) l ds H'fwv(xc(t),t+5)H(Eisign[t+s] -
Qe Jo :

- E sign{t+s])(sign{t] - I signit]),

where [t], [t+s] are defined below (3.10).
The rest of the development is exactly as in Section I[II.1,

except that, when taking derivatives in the calculation of Abf:(-),

B ey



the explicit form of the expectation and conditional expectation
) €
are used, analogous to what was done with fl('), and the bound helow

(3.14) is replaced by

The limit ;s still (3.3).




V. The Quadricorrelator Without A Limiter

he svstem and some ot the notation is given by Figure M. s
in Sectton 11, the equations detining the Tincar tilters are
merelv state variable representations ot low pass filters.  The

noise model n -V ot Sectiron D s used here and in the neat

t L

sectim, Tet the initial freaaenasy orror R S not denend onos, and st
Al . Al
Wyt eT W ot K Uocabsorh it into A, Tor the upper
1 1 \ Al N B}
filter, lot k'll!l = 0,  Thix is necessary to guarantee that the

limit ot the invut as > 01 to the Jifferentiator as Jditferen:
tiable.  Fhis restriction s normally satistied In practical svatems,
Now the svstem state 18 N (\-' .\u ). \s in Section 1, the
noise center frequency need not be e provided that (norse center
L. N .
frequency minus w[\-q: » 0 as ¢ » 0. The purposc ot the svstem
(3} is the estimation of and tracking of the (possibliv time varving!
input fregquency. Unlike the phase locked loop, the mnput te the
VEO Jdepends on oa trequency as well as a phasce crror.  Scce the
heuristic compents in {3]. which are repeated below (4.1, We use
the assumptions on .\” and 0 of the previous section.

The analvsis is very similar to that of Section 11, and only

t
a4 few details will be given. The sequence  Ix ()b converges

weakly to x(°) = (vl(-). vo{*), 9(<1), where

/\0 . J.
dv = Dpvide a0 dsinawt + v - ddt e 55 AR

A(\ N O,
dv, = Dovodt + 50 Hicos(Aawt + v - cddt + 7 HUdB, (4.1)
do = vil)i(‘.i(‘.z\,':dt. 03 = o )( £{stds,

Y WS S



where the Bty are independent Wicener processes,  The independence
of the » -1 1s o conscguence of the orthogonality ot the - -0, O

|
it does not derend on the danssian assumption on the Sy tasa

~similar independence assertien Jdoes tor the case of the next scection)., \

Remark. Assume, purely formally, that the tilters are such

that for some positive Y theitr outputs are rouvhly \"ltt»

i

R . L t t \ - . .
-~0szn(\wt + U [N mlu Y, ml\'\ being some dritterentiabic noise, ‘
. T ¢ : B

amd vty o dlco.\‘( Vet e Y e (Y, om0 bhoetng some notse |
- - : . . !

. PR . . N . L - . O y.& ¢

process, Then the VOO ainput i~ s ‘l«\u‘ vl Yol dcosT et v v s e o

tnotse terms, Thus the VOO action depends on the tfrequency ottt set
Vwoas o well as o on the phase estimation ocrvor.,

Continuine with the development, detine

. 'y Ao N ‘ ) X
u](t,tw.k YT st et 0 ) e ul‘( (t,t+s ‘l)
. YT '
L
‘ \ (4.9

1y R \ ) Al o NS . [ N

ULttt 80 0 ocos Mg AY 0Ty w, 't tes 0 L

: A g, 2 !
where we detine "

0 RS L N : N 1

up oty tes ) = ll(“-\')t‘o-\'(‘\“‘t-‘) ) o+ oz tEs)sin(Awt -U ) f

t,0 R S . b t T

ULt tes U )= ‘3](t*s)$lnkﬁwt" o+ s (tesdcos (Awt vy

Proceeding as in Section 111, tollowing the argument helow (3,00,
and droppine the terms dropped there, the inputs to the lincar

. . t N
tilters at time t are n-l(t.t.UL(t).UuH. i - 1,2 Then
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b
f where Ri(') are independent standard Brown motions and <
; defined by (3.4). Note the "1/¢ ¢ffect™ in 5.2, The b
are independent owing to the Gaussian assumption, hevause of which
L, Q0 T . . i S ®
the uj’ (t,t+-,2 Y, 1= 1,2, are independent for cach 1
This, in tum, ts due to the ~ /2 phase shitter,
]




VI. The Squaring Loop

In this section, we do an asymptotic analysis of the system
of Figure 4, whose purposc is to 'track the carrier frequency"”
irrespective of the input modulation process ms(-). We will study
the effects of the m_(-) on the estimation error proccss

(v%(.) - vt(.)) for small noise, and, eventually, do a linearization

analysis. Vor notational convenience, scale such that X, = 1. In

a sense, the procedure below is an attempt to rigorize the heuristic

analvsis of Gardner |3], Appendix B. The 1limit equations are given in

(6.14)-(06.15).
For specificity, let the transmitted signal be pulse phase shi:

or amplitude modulated in the following way. We will scale the nrobler

so that a meaningful result can be obtained for small pulse widths

and small noise. Let p(-) denote a realizable transfer function,
continuous ftfor t > 0 and right continuous at 0, and set vh(t\ =

D
p(t/q>), where ¢/q. > 0 as ¢ » 0. Let {ak} he a sequence of bounded

evro mean independent random variables with unit variance, and set

o 2
m.o{t* = I nkp>(t-kT£J, where T = Tq; denotes the width of the
< K= o . S
pulse interval, T being some g¢given constant. Suppose that there is

a bounded non-increasing function p(+) such that [p(t)|< p(t) and
[~ v - o . . .

i dt { du p(ur < <=, The general technique of this section can be
0 ‘t

used with a greater variety of modulation types, and the independ-

. . ~E
ence of {ak} can be weakened. The input noise n (+) has the form:

. . ¢
nh(t) = [zi(t)cos wgt + zg(t)51n wot]O.

B s it ol
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The squaring Loop.




where - (+3 and :;(-W are defined in Section T11.
(o .

In this section, the analysis is done for small noise, as csscntially
- Tt
acsumed in 131, Anpendix B, <o we do not divide n (-} by g

o

SUpno et D= qu,)’ and that the :jf') are independent of
Zlk'_'

The scaling is of the correct order for a meaningful problem.
The signal and noise BW's are both U(q;:). The sequence ’ka
1s the transmitted =ignal sequence and the DL(-I vields the
transmission channel behavior ("intersymbol intertference'). The
"memoryv' in the "svmbol interference' svstem is roughly the same
number of pulse intervals, irrcspective of €. Also, for small =,
the average noise energy per pulse interval is of the same order

as the signal ecnergy in that interval. With an inappropriate scaling,

the problem would degenerate, as + » 0, to one in which Jdetection

T 5
was cither pertfect or purcly random. In our case, E[j "ntis)ds |t s
0
-~ ,’1 ~ M
OUTI) and | “isignal (s) + n(s)]ds - NLO(T ),0(T7)].  So the
N

detection problem does not degenerate as ¢ » 0.

Since we wish to work with small errors and to eventually do a valid

1 N 3 E (Y Y - " v N - A L’r
linearization, let ¢ (“}~°C(4) = O(qsl.'ﬂuS\ullxumrmnco that & {t)

i

SE0t) - DRt O(qb) for any {inite t. It{ we wish to assume
ity = O(qj) for some 4 ¢ (0,1), then a difterent scaling would
he usced in the scequel, but this point will not be pursucd.

The circuit of Figure 4 was investigated by Gardner [3],
Appendix B, and clsewhere, using pood enginecering intuition, but

without the benetfit of the asymptotic theorv, and required some

ad-hoc assumptions (e.g., holding the state variable Jb(t) fixed




thranchont . and 1ciny "approximate’ spectral methods on a non-
lin-a: rrobler . Anv verification of that technique and result
mct armarantic Jdeal with an “asvmptotic situation® scaled
creontially as above,

The analvsis i< siarted in o conventional way , by making certain
expansions and dropping some of the terms. This procedure, commented
on helow, van be rigorized at the eapense of additional detail and
notation. tirst, squarc the input, expand the products of the obtained
trigonometric functions in the usual wav in terms of the sums of sines

and cosines' of the sums and difference of the angles. Drop the terms

. . (4
whose sin or cos factor does not contain a Zw,. We supposc that the
saquarer contains a linear higch pass filter which does this. Since

the BW of the dJdropped terms and the BW about 3w5 of the retained
terms 1S th;:}, there is no problem in explicitly introducing such
a filter, but it unnecessarily complicates the notation. Next, having
dropped the cited terms, multiply the remainder by the VOO output

sin ?(w5t+dt(tJ), expand the products of the trigonometric {functions
as above, but now drop the terms whose since or cosine factor contains
an w; in the argument. We supposc, as in previous sections, that
the multiplicer contains a low pass filJter which does this, In fact,
such an assumption is not neccessary, and 10 the dropped terms were
carricd through the analysis, they would not atfect the Timit. But,
for notational convenience, it is helpful to drop them at this point.
Denote the resulting term, the multiplier output, by ub(t) =

ub(t, éa(t),at(t)), where

3 € LE 1 .2 . € J¢ l\-lc' £ £ S4E
u (t,8°,07) = - me(t)51n 2(07-07) «+ — me(t)[-zl(t)sin(o -207)




2 - .
+ z5(t)cos (v -2H] + G [CEe? - e Tsin 28

+ Zzi(t)zg(t)cos 26°%]. (6.1)
Define % = (u“-é“)/qb, Xy = vt/qb. Then
b b
SKimT ity L. L, e St
e 1 & sin 2(9 -9 )
o= DXy * W[ =g X ]
&

HFIC m_ (t)

, . ~ L 3 £ .NL A
e [-:i(t)s1n(ut—26 ) + :é(t)cos(b -2v ) (6.2a)
2 1,
2 N2 & S
gl (zTEDT sy o 2zy(t)z, () ¢
+ 4 [ - =——— sin W~ 4+ — ¢os 20 7]
1 qL qb
b b] ~ e
) SKpmI(t)sin 2(s 0Ty HKO .
= Dxl + H{ IQL- : ]+ 75;" vl(t,v WU \mt(t}
2 . ..
Lo vt(t,d',uh) (6.2b)
LT 2
e
. Qb . E .
\: = éb/qa - Uxy, (6.2¢)
where (6.2) defines the vf(-). Mwing to the normalization, we re-

L]
]

aquire that ut(-,)/q6 converge to a right continuous function d(‘)
fwith left-hand limits) as ¢ ~ 0, or e¢lse we deal with a subscquence
which does converge. We assumed vE = Ofa,) in order to bhe able to
do the linearization analysis bhelow. For such a linearization to

be valid, we must have 66(-)»Oas € » 0, If{ the rate is slower than
ﬂ(qg). the effect of the OE(-) variations on the tracking errors in-
crease to » relative to the effects of the m () and ﬁb(-).(ln‘scalhm
is the unique one for which the noisce and Ut(o} cffects are commens -

urate, lor small v > 0,

e e e — Y ‘




Detine

. Lo,
gTo= L ( TImT(s)ds =

P )
{ v op(s-kI)ds.
£ JO

We now follow a procedurce very similar to thosce of the previous
sections, avain omitting most details, The main ditferences being

due to the periodicity of tmli(ss1 and of (06.9), which forces us to

oot

. . - . . AN ™ L
use an additional averaging. We have sin 2{¢ -v )/qL = Ox, ¢

T v S “ . . . . . -
NG, QY - owing to the assumption on the initial conditions,

it the 0Oi-) above were carricd through the analysis, it would
contribute nothing to the limit. For convenience in the analyvsis

. . - PP S & .
here, it is dropped hencetorth and we replace sin 2(V -v )/q_ 1n

(6.2) by \t This must be kept_in mind in_the manipulations
below. We use the torm ft(t) = f(xE,t) + ~i f;(t) tfor the perturbed
test function. Y

As usual for () € @ (write X" o= xb(t)),

ATt - ot e - € .t ' .
ATE(xT,t) f,o(x ,t) + ix X ,t).\1 + fx)(x

Again, the components of (0.3) containing the processes m (-] or
L Al o - . .
= -} must be averaged out. The fivst term which we will average

. £ 2.0 . . - .
out ts f;(x ,t)H[-KImE(t)xz/J]. For this, we use the test function

perturbation fS(t) = f;(xt(t),t), where we define
2
fb(xe = -Kl ” ' € ctp 2 2 t
0 st} = - 0fxl(x ,t+s)Hht[mL(t+s) - oalxzds
2 2 (6.4)

_ Kqu * ' L 2 e 2 5 ? L
= -y fofxl(x ,t+qbs)}“;tlmg(t+q:5) - ()""‘]xzds'




. ; . v 2 2
By the assumptions on pl-) and on {akv lLtmL(t+q£s)

]

2ot . ¢ . . .
LD (xS kI ST(t,s1 2~ 0 as s > w oand is integrable in
. q ?

s, unttformly in  t,+., Since the above sum is periodic with period T,
~ Y
A}

we center m7(-i about its arithmetic mean cf in (e.4).  The

integral in (o.4) is O(q).
We have fG(-) € ﬂﬁ(ﬁb) and it can readily be shown that

NTx

119 ¢

1

NI S L ~ - t 2 ‘.2
A tO(.\ Sty o= - t; (x ,t)ll(mL(t) - km) +0Lq ).

1

¢

]

Thus | the m7(-) term in (0.2) contributes oniyv its mean value
to the limit cquation. Sce (0.1%) for the summarizing calculation.

Next, we average out the "remaining' noise terms in (6. 3).

This reguires (as usual) f;(xc(t),t) = f;(t), where
woon (m UKL ' .t & vi(tﬂ;’U{(t)’bt)mc(t*shls
(LX) = D s HI (X, sy e e e
o - N q,
. oL N)
[ o C vl T e s
e L I O TEEEEEE
JO M ‘h

As usual, the "remaining” noise term in (0.3) is just the sum ot the
integrands in (0.5), evaluated at s = 0. By using the change of
. ’ .t .
variable </q7 » s, we can show that (](t) i~ bounded by
b

otq (125 7.

Procecding as usual, we next get that




\;f:!~°,t) = -{integrand of (6.5) evaluated at s = ()
(6.6)
+ (terms whose p-lim is zero) + @’(xb,vh(t),t),
£+ ()
where
LS S S €

Q(x W (t),t) = (fl o XLt e fTast twe terms ap richt side

” (0.7)

of {6.2a)).

The second term on the right side of (6.6)

O(qe)L1+]2%(t

yrd

f

replaced by

| .

f

Actually, Q&(x&,@b(t),f)

is bounded by

1s just (6.5) with

and multiplied on the ripht bv the last

X 1%
two terms on the right side of (60.2a),

Using the mutual independence of the {zi(-),

processes together with the fact that the :;-)lun@ mean zero A are

L= 1,2,m ()}

. . 2
Gaussian and that 51n2u + cos"u Z 1, we get that

2
B B b Kfob 3 M
EQ (x ,¥ (t),t) = — H'fx X (x ,t+s)Hp(s/q” VEm (t+s)m (t)ds
4q; ‘0 17 )
(0.8)
4 ot 2 (" 3 2,2
+ o (1") [ H'fx x {(x ,t+s)Hp (s/qb)ds,
yr 0 171
where
Em, (t+s)m (t) = g-mpﬁ(t+s~ka)pE(t-kTL). (60.9)
The expression (6.9) is periodic in t (period T,). Because




1 - A0 -

of this periodicity, an arithmetic averase of (6.9} is uscd in
AU . . NS
defininc the centering term for ().

Let us write

'3 [ 5
%W { Em (t+t+s)m (t+1)dl = V(s/q)) =

5 4'1) .

. S tes A N ‘!
T . ’_)_" [)(_“2;; + U - k]‘)p(-—z + . - KT)dt (6.10) .
) k=-w d¢ A, ll

. T w .
1 v s o ) oy s
= :*l: J 2. P('—,, + 1 ‘k[)])(l'kl'dl. 4
0 k:—uo q: r
k'
- 5 ‘
Now, define F7(0) by f:(t) = [, \L(t\ t), where b
- - © 1
IR & ru .
f(x ,t) = m«;~ J di dxH' X (X t+T+s)H{} lv (t+l+\)\ t*t)mcft+l+s)mt(t+t)] *?
- l({t 0 ]. "3
2 2.

- b(s/q0V(8/q]) 1
{

Ke 22 ;
+ ~J1»(U—J dt | ds H'f (xg,t+T+s)HEL[v%(t+1*s)m (t+1*s)v:(r+1)
2 4 0 0 X, X t 1 v 2

2q; 171
£ ) t . .
+ vz(t+t+s)v1(t+t)me(t+f)] {6.11)
L 2r° ' s & €, 3 ?
+ () dt | dsH fx X (x ,t+T+s)H{htvz(t+L+s)v2(t+1)
¢ n 0 171

- Evg(t+1+s)v2(t+1)}.

Ihe centering temm in (6.11) is precisely (6.8) but with Bnﬁ(t+s)mh(t)

replaced by its arithmetic mean V(s/0 ). It can be shown that fs(t) is bounded by




L

O(qZ)ll+]zL(t)16] (6.12)
and that

Atf;ft) = (6.3) (but with Ematt+s)mh(t) replaced by V(</qa)
{6.13)

[T . 6{

D{s1t),s (t),t) + terms satisfving (6.12).

<. . . [ [
Summarizing the above calculations and writing x for x (t)

vields
. LTI
p-lim [ } fi(x ,t)) = 0
£-+0 1=0
p-lim [Af"(x",t) - (& + Ars, 0] = o,
e-~0 ¢
where
K%Oixz - o~
Af(x,t) = f;(l(x,t)[Dx]-H“——z—'— ]+ f,\-Z(“"t)[e'Lxl]
(6.14)
04 w0 Kfcz ©
<15 [ ePtsnas v [ etoIvisyasinre, o (oo,
0 4 0 1%1

Tightness can also be shown by applying |6, Theorem 1] with the given

order estimates. By Theorem 1, {xt(-)} converpes wecakly to
x{(+) = (xlt‘),xz(-)), where
dx; = [Dx)- 1 Kfo2x,/2]dt + /2 ogHdB
dx, = (o - Cx,ldt, (6.15)

standard Brownian motion,

B(+)




(P2

where © is the last bracketed term in (6.14). With non-

Gaussian noise, the limit is the same except for the value of

g

2

3

=

!
;

o T
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